
Name	Teacher	Date
Activity 4.3: Mo	olecular Model ng Food Works	
You will use models to learn abou you continue to look for answers t	it how potatoes make food at the	ne atomic-molecular scale, as
A. Introduction Plants photosynthesize when they energy, which is stored in the high molecular models to show how this	n-energy bonds of glucose: C-0	
Put these molecules of b. □ When you are finis water, put away all extrimportant step! c. □ Place 12 twist ties card. These twist ties recommended.	ce models of the reactant molecarbon dioxide (CO ₂) molecule in the reactant side of the Moleched creating the reactant molecar pieces that you didn't use from the "reactants" square on your epresent light energy coming the	cules: carbon dioxide and water is and 6 water (H ₂ O) molecules. cular Models Placemat. Ecules, carbon dioxide and om the molecule kit. This is an our poster with a "Light Energy" from the Sun.
this happens. a. □ Take the carbon didentification and recombine them in oxygen (O₂) molecules product side of the Mode Answer these question i. How many carbon used? ii. How many water	ow how light energy is transform oxide and water molecules apart nto glucose (C ₆ H ₁₂ O ₆) and s. Put these molecules on the decular Models Placemat.	art OH OH OH H C H C OH OH H C OH OH H C OH OH H C OH OH OH H C OH
 b. □ Energy lasts forever Models Placemat. Glue all the C-C and C-H bo 	cose has high-energy bonds (C	e product side of the Molecular C-C and C-H). Add a twist tie to n of energy did the light energy

card(s) under the twist ties.

C. Atoms last forever!

Account for all the atoms in your models.

- 1. Circle all of the Carbon ATOMS in the reactants. How many are there?
- 2. Circle all of the Carbon ATOMS in the products. How many are there?
- 3. Underline all of the Hydrogen ATOMS in the reactants. How many are there? ____
- 4. Underline all of the Hydrogen ATOMS in the <u>products</u>. How many are there?
- 5. Put a square around all of the Oxygen ATOMS in the <u>reactants</u>. How many are there?
- 6. Put a square around all of the Oxygen ATOMS in the products. How many are there?
- D. **Energy lasts forever!** Account for all the energy in your models.
- How many twist ties are there before the chemical change? _____
- 2. What form of energy is there before the chemical change?
- 3. How many twist ties are there after the chemical change?
- 4. What forms of energy is there after the chemical change?

E. Check Yourself!

- 1. Did the number and type of atoms stay the same at the beginning and end of the chemical change?
- 2. Did the number of twist ties (representing energy) stay the same at the beginning and end of the chemical change?
- 3. Why do the numbers of atoms and twist ties have to stay the same?

F. Writing the chemical equation

Use the molecular formulas ($C_6H_{12}O_6$, O_2 , CO_2 , H_2O) and the yield sign (\rightarrow) to write a balanced chemical equation for the reaction: