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Abstract 
In this article we report on our progress towards validating a large-scale, or monitoring, 

assessment of science learning that utilizes a learning progression-based conceptual model of 

the progressive nature of science learning. The Carbon: Transformations In Matter and Energy 

(Carbon TIME) assessment is designed to measure student understanding of a key topic in the 

science curriculum: carbon-transforming processes in socio-ecological systems. We ask, to 

what extent can we use assessment results to validly distinguish among the explanation 

practices of students at three scales: individual students, class-size groups of students, or 

program-size groups of students. We present an empirical validity argument of the utility of this 

assessment for this purpose using the Standards for Educational and Psychological Testing 

(2014) developed by the American Educational Research Association, the American 

Psychological Association, and the National Council on Measurement in Education. We 

conclude that the Carbon TIME assessment is clearly useful for learning purposes and for 

program evaluation, but that results comparing individual students or teachers can only be used 

with great caution.  

Introduction 
How can we use learning progression research to develop valid monitoring assessments 

of science learning? Although this is a simply stated question, it does not have a simple answer. 
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In this article we develop an answer to this question, in three parts. 

1. Defining the problem. In this section we define the scope of this article using key terms 

in the opening question: learning progression, valid, monitoring assessment, and 

science learning.  Our goal is to design a valid large-scale, or monitoring assessment, of 

science learning that utilizes learning progression-based conceptual models of the 

progressive nature of science learning. 

2. Reviewing current assessment validation studies. We briefly review studies of the 

validity of current science monitoring assessments and of current learning progression-

based assessments. 

3. Validity arguments for a monitoring assessment of carbon-transforming processes. The 

main section of this paper uses the Standards for Educational and Psychological Testing 

(2014) developed by the American Educational Research Association, the American 

Psychological Association, and the National Council on Measurement in Education 

(AERA/APA/NCME) as a framework for a set of empirical validity arguments for a 

learning progression-based monitoring assessment, the Carbon: Transformations In 

Matter and Energy (Carbon TIME) assessment, designed to measure student 

understanding of a key topic in the science curriculum: carbon-transforming processes in 

socio-ecological systems. 

Defining the Problem 

In this section we use four authoritative reports, the AERA/APA/NCME Standards for 

Educational and Psychological Testing (2014) and a series of three reports from the National 

Research Council (NRC)—Knowing What Students Know (NRC, 2001), Systems for State 

Science Assessment (NRC, 2005), and Developing Assessments for the Next Generation 

Science Standards (NGSS; NRC, 2014), to define the scope of this article. We first discuss the 

kind of science assessment we focus on for this article, large-scale or monitoring assessments. 
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We next discuss standards for validity. We then discuss how learning progressions can be used 

to assign a particular meaning to science learning. Finally, we pose three research questions 

around which our validity arguments are organized. 

Focus on Monitoring rather than Classroom Assessments 

Two NRC assessment reports, Systems for State Science Assessment and Developing 

Assessments for the Next Generation Science Standards (2005, 2014) emphasize that 

standards-based reform will require the development of assessment systems that include many 

different types of assessments designed for different contexts and purposes.  

Classroom vs. monitoring assessments. The NRC report on assessment for the 

NGSS (2014) describes two broad categories for science assessments: classroom and 

monitoring assessments. These two types of assessments differ in a number of important ways. 

Classroom assessments are often embedded in instructional programs: the assessments are 

closely aligned with an instructional program that is organized around specific curriculum goals. 

Development of student understanding over time is defined by the particular sequence of 

lessons in the instructional program. Many studies report on the successful use of learning 

progressions as frameworks for the development of classroom assessments, with the learning 

progression tightly linked to a particular sequence of lessons (Claesgens, Scalise, Wilson, & 

Stacy, 2009; Furtak, 2012; Gotwals & Songer, 2010; Lehrer & Schauble, 2012; Schwarz et al., 

2009).  

Tight coherence among assessments, curricula, and instruction is appropriate for 

classroom assessments, but for larger-scale monitoring assessments it can be problematic. 

Monitoring assessments are necessarily at a coarser grain size, so that they are not linked to a 

particular set of curricular activities; however, they can still be based on the same goals for 

science education that was used to develop the classroom assessments (and to select 

appropriate curricula). Monitoring assessments have a number of important uses that transcend 
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evaluation of specific curricula: 

They can be used to answer a range of important questions about student 

learning, such as: How much have the students in a certain school or school 

system learned over the course of a year? How does achievement in one school 

system compare with achievement in another? Is one instructional technique or 

curricular program more effective than another? What are the effects of a 

particular policy measure, such as reduction in class size? (NRC, 2014, p. 5-1) 

The success of learning progression-based classroom assessments does not assure 

that learning progressions can also be useful for monitoring assessments. For monitoring 

assessments, the learning progression framework must describe “how students’ science 

understanding develops over time” for a broader range of students who may not be 

experiencing common curricula or instructional strategies. This requires using a learning 

progression framework that defines stages or levels of proficiency to characterize student 

performances but is not tied to a particular instructional sequence. 

Design issues for monitoring assessments. Monitoring assessments can conceivably 

be used for multiple purposes, and those different purposes are associated with design 

tradeoffs. In this article we focus particularly on the tensions between what Shepard (2013) 

describes as accountability and learning purposes of assessments. Accountability is particularly 

associated with high-stakes summative assessments that have implications for the future 

success of students, teachers, schools, or programs. When assessments are designed for 

accountability purposes, fairness is a key design goal: the scores that the tests produce must be 

consistent and accurate and not disadvantage a particular group of people. Learning-oriented 

assessments, on the other hand are designed more to produce insight into the nature and 

origins of student performances, helping schools and teachers improve the quality of the 

education that they offer. Ideally our assessments should be both fair and insightful, but as 

Shepard and others (e.g., Penuel, Confrey, Maloney, & Rupp, 2014) have pointed out, there are 
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many practical and legal considerations that make it difficult to achieve both of these goals with 

the same assessment.  

Standards for Validity Arguments 

As Baker describes, validity “addresses the quality of the test and its results and, most simply, 

whether a parent, a teacher, a scholar, or a policymaker should trust test results and inferences 

they suggest about school effectiveness, student achievement, teacher evaluation, or changes 

needed in instruction” (2013). The AERA/APA/NCME Standards make two key points about the 

nature of validity and the validation process. 

1. Validity is associated with proposed uses or interpretations of assessment 

results, not assessments alone. All assessments can be misinterpreted or misused, so we 

can never simply say that any assessment is “valid.” “Validity refers to the degree to which 

evidence and theory support the interpretations of test scores entailed by proposed uses of 

tests.” (AERA/APA/NCME, 2014, p. 11). As the quote from the NRC report above suggests, the 

proposed interpretations of monitoring assessments and classroom assessments are 

substantially different and hence require different types of evidence.  

2. Empirical arguments for validity can be constructed using different sources of 

evidence. What evidence is needed to argue for the validity of an assessment? The 

AERA/APA/NCME Standards describes “a sound validity argument” as one that “integrates 

various strands of evidence into a coherent account of the degree to which existing evidence 

and theory support the intended interpretation of test scores for specific uses” (2014, p. 21). The 

Standards provide a set of six major types of validity evidence, five of which are relevant for the 

current paper: 

1. Evidence Based on Test Content is “the relationship between the content of a test and 
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the construct1 it is intended to measure. Test content refers to the themes, wording, and 

format of the items, tasks, or questions on a test.” (AERA/APA/NCME, 2014, p. 14) 

2. Evidence Based on Response Processes is “the fit between the construct and the 

detailed nature of performance or response actually engaged in by test takers.” 

(AERA/APA/NCME, 2014, p. 15) 

3. Evidence Based on Internal Structure is “the degree to which the relationships among 

test items and test components conform to the construct on which the proposed test 

score interpretations are based.” (AERA/APA/NCME, 2014, p. 16) 

4. Evidence Based on Relations to Other Variables is the “relationship of test scores to 

variables external to the test… External variables may include measures of some criteria 

that the test is expected to predict, as well as relationships to other tests hypothesized to 

measure the same constructs, and tests measuring related or different constructs.” 

(AERA/APA/NCME, 2014, p. 16) 

5. Evidence for Validity and Consequences for Testing: “Educational tests … may be 

advocated on the grounds that their use will improve student motivation to learn or 

encourage changes in classroom” (AERA/APA/NCME, 2014, p. 20). 

We note that there is an order to these five types of evidence. The first two focus 

primarily on qualities of individual items; the third focuses on the coherence of item sets or 

instruments containing multiple items; the fourth focuses on relationships among instruments 

measuring related constructs; the final type of evidence focuses on the role of assessment in 

education systems.  

                                                
1 In our definition of construct, we use the work of Mark Wilson (2005). He defines a construct map as “a 
well thought out and researched ordering of qualitatively different levels of performance focusing on one 
characteristic.” A construct map defines what is to be assessed in terms general enough to be 
interpretable within a curriculum and potentially across curricula, but specific enough to guide the 
development of the other components (items, scoring guides, and the measurement model). 
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Science Learning and Learning Progressions 

The AERA/APA/NCME Standards are general, designed to apply to all educational 

assessments. In this section, we address how these standards apply specifically to science 

monitoring assessments, and the potential of learning progression research to contribute to 

improved monitoring assessments.  

Conceptual criteria based on learning progression theory and practice: The 

assessment triangle. The usual procedure for test content validation is a “panel of experts” 

approach, in which questions of student cognition are not addressed. Knowing What Students 

Know (NRC, 2001) endorsed a cognitive interpretation of “evidence based on test content.”   

The central problem addressed by this report is that most widely used 

assessments of academic achievement are based on highly restrictive beliefs 

about learning and competence not fully in keeping with current knowledge about 

human cognition and learning. Likewise, the observation and interpretation 

elements underlying most current assessments were created to fit prior 

conceptions of learning and need enhancement to support the kinds of 

inferences people now want to draw about student achievement. A model of 

cognition and learning should serve as the cornerstone of the assessment design 

process. This model should be based on the best available understanding of how 

students represent knowledge and develop competence in the domain. (NRC, 

2001, pp. 3-4, emphasis in original) 

Both of the NRC science reports (2005, 2014) follow Knowing What Students Know in 

representing the key components of an assessment system with the assessment triangle 

(Figure 1): cognition, observation, and interpretation. Assessment instruments (the observation 

vertex) must be aligned with the knowledge and cognitive processes one wishes to affect 

through the instructional process (the cognition vertex), and the scoring and interpretation of 
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student work must reflect measures of the same knowledge and cognitive processes (the 

interpretation vertex).  

  

Figure 1: The assessment triangle (NRC, 2005, p. 86) 

Learning progressions as models of cognition. Learning progressions are 

“descriptions of increasingly sophisticated ways of thinking about or understanding a topic that 

can follow one another as children learn about and investigate a topic over a broad span of 

time” (NRC, 2007, p. 214). Well-grounded learning progressions can serve as a basis for 

dialogue among science education researchers, developers of standards documents, 

assessment developers, and curriculum developers. This learning progression approach is 

endorsed by both the NRC (2005, 2007) and the National Assessment Governing Board in the 

framework for the 2009 National Assessment of Educational Progress (NAEP) science test 

(National Assessment Governing Board, 2006). Conceptual and methodological foundations for 

learning progressions are described by Briggs, Alonzo, Schwab, & Wilson (2006), Smith, Wiser, 

Anderson, & Krajcik (2006) and Wilson (2009), among others. 

One of the primary reasons that science educators have been interested in learning 

progressions is their potential as models of cognition for assessment. Indeed, the first reports on 

science learning progressions (Catley, Lehrer, & Reiser, 2005; Smith et al., 2006) were 

developed for the NRC panel that developed the report Systems for State Science Assessment 

(2005). This report, and a subsequent report on assessment for the Next Generation Science 
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Standards (2014) advocated systems of assessment that use learning progressions to define 

standards, develop assessments, and construct curricula.  

These documents advocate using learning progression frameworks to define the 

Cognition vertex of the assessment triangle (Figure 1): Learning progression frameworks 

provide a particular kind of model of cognition. Rather than simply defining “correct” 

performance, learning progression frameworks provide descriptions of students’ knowledge and 

practice at multiple levels—the target performance as well as lower levels of incomplete 

mastery. Thus the “content” of a learning progression-based assessment is the entire 

framework, not just the scientifically correct answers. The essential contribution that learning 

progressions can make is to shift from a binary to a multilevel description of student proficiency.  

Characteristics of Current Science Monitoring Assessments 

Monitoring assessments in science and other content areas are a multibillion-dollar 

industry, supported by a large infrastructure in universities and in educational assessment 

companies. Commentaries about the validity of these tests fill many volumes, including the 

three NRC reports cited above (2001, 2005, 2014). It is beyond the scope of this paper to add 

substantively to those commentaries. We will, however, use the framework of the 

AERA/APA/NCME Standards to point out a few of the reasons that the reports have advocated 

the use of learning progression frameworks in developing monitoring assessments. The 

discussion below is based on those reports, as well as on Alonzo, Neidorf, and Anderson’s 

(2012) chapter contrasting current monitoring assessments with learning progression-based 

assessments. 

1. Evidence Based on Test Content: Current science monitoring assessments are 

generally based on state or national standards or on other content frameworks, and their 

development typically involves elaborate procedures for making sure that the 

assessments include questions sampling from the domain defined by the standards 
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documents. The reports above criticize this process on two bases: 

a. Inadequate representation of important scientific knowledge and practice, due both 

to limitations of many standards documents and to the economic decision of many 

assessments to rely heavily on multiple-choice questions. Developing Assessments 

for Next Generation Science Standards makes this argument particularly forcefully, 

arguing for “three-dimensional” assessment that incorporates practices, crosscutting 

concepts, and disciplinary core ideas (NRC, 2014, Chapter 2). 

b. Failure to incorporate research on student learning. In contrast with learning 

progression frameworks all current standards documents define constructs in terms 

of correct scientific knowledge rather than construct maps that include students’ non-

canonical knowledge and practices. 

2. Evidence Based on Response Processes: Although many testing organizations include 

“cognitive laboratories” that use think-alouds, clinical interviews and other methods to 

check for agreement between students’ responses to test items and their reasoning, 

these checks take a relatively small role in the development process (Padilla & Benítez, 

2014). The process is especially restricted when the questions being evaluated are 

multiple choice. Several studies (De Boer, Dubois, & Herrmann-Abell, 2008; Noble et al., 

2012) have found (a) that students’ responses are often based on reasoning unrelated to 

the construct that the item is supposed to measure, and (b) significant numbers of 

students either chose correct responses based on incorrect reasoning or chose incorrect 

responses based on correct reasoning.  

3. Evidence Based on Internal Structure: Current assessments have strong conformity 

between the measurement model and the observations (two of the vertices in the 

assessment triangle, Figure 1). They rely extensively on item response theory or 

classical test theory to make certain of this conformity, including consistency among 

individual items designed to measure the same construct, monitoring for item difficulty, 
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monitoring for consistency among different forms of the same test, and other factors. 

However, the construct (the third vertex of the assessment triangle) is absent or not 

clearly specified.  

4. Evidence Based on Relations to Other Variables: Current science assessments are 

checked extensively for their relationships both to other assessments and to criteria such 

as future success in high school or college science courses.  

5. Evidence for Validity and Consequences for Testing: The prolonged debate about the 

consequences of current assessments for the quality of education has gone far beyond 

education professionals into the political arena and the popular press. The NRC reports 

reflect the general consensus among science educators and many measurement 

specialists that high-stakes assessments based on multiple choice questions generally 

narrow the science curriculum and distort evaluation of both student learning and 

teachers’ competence.  

Thus current science monitoring assessments are designed primarily for what Shepard 

(2013) refers to as accountability purposes, and the standards they meet with respect to internal 

structure and relations to other measures of achievement make them fair in the sense that 

fairness is commonly defined in our legal system and intuitively by the general public. The 

assessments can be administered to all students and scored efficiently; students’ scores can be 

reliably compared across test forms, years, and sites.  

However, these qualities are achieved at the cost of compromises that are heavily 

criticized by both professional educators and the general public (Pellegrino & Chudowsky, 2003; 

Wong, 2015). They generally elicit a narrow range of student performances, depending heavily 

on multiple-choice questions. Furthermore, the focus on accountability purposes leaves little 

room for learning purposes; consistency in scoring is achieved at the cost of insight into student 

thinking. Thus the deficiencies of current monitoring assessments with respect to other kinds of 

validity has led the NRC panels to advocate for monitoring assessments that can better serve 
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learning goals, meaning that they must achieve higher standards with respect to 

content/construct validity and response processes. In this article we report on progress toward 

developing learning progression-based assessments that meet these standards. 

Current Learning Progression Assessments 

 Current learning progression validation studies, our own and others (Alonzo & Steedle, 

2009; Gotwals & Songer, 2013; Gunckel, Covitt, Salinas, & Anderson, 2012; Lehrer & Schauble, 

2012; Mohan, Chen, & Anderson, 2009; Plummer & Krajcik, 2010; Rivet & Kastens, 2012; Shea 

& Duncan, 2013), have been designed with learning rather than accountability as a primary 

purpose. Thus they are far more careful than current monitoring assessments in collecting and 

evaluating construct and response process validity evidence. These studies generally use 

iterative design-based research to carefully align assessment items to the proposed learning 

progression framework to ensure construct validity. They also use think-alouds and 

comparisons with student performances in other settings to improve response process validity. 

This careful work has resulted in empirically supported learning progression frameworks and 

assessment items.  

The evidence presented in these studies, however, falls short of current standards for 

monitoring assessments with respect to internal structure and relations to other variables. The 

validity arguments in previous learning progression studies have been for claims about items 

and learning progression frameworks rather than claims about people (but see Steedle & 

Shavelson, 2009). For example, internal structure modeling in the recent learning progression 

validation studies by Gotwals & Songer (2013), Rivet & Kastens (2012), and Neumann, Viering, 

Boone & Fischer (2013) is used to show that the item difficulties are aligned with the item 

learning progression levels, but not to evaluate claims about students or groups of students. If 

we want to use learning progression-based assessments for monitoring purposes—for example, 

to measure progress of individual students or to compare educational programs—we will need 
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to evaluate the assessments with respect to a broader range of validity evidence. In this article 

we undertake this kind of evaluation for assessments developed through the Carbon TIME 

program.  

Research Questions 

We have designed assessments that use learning progression levels to define student 

achievement and reported on the results of those assessments (Jin & Anderson, 2012a; Mohan 

et al., 2009). In these articles we provided evidence that the assessments are useful for learning 

purposes: They provide insight into students’ reasoning. But are they also useful for monitoring 

purposes?  Can they be used to make fair comparisons among students, classrooms, or 

programs? As the AERA/APA/NCME Standards make clear, answering this question requires 

us to attend to multiple forms of validity evidence.  

We address the validity issue by specifying three types of claims. We want to use 

learning progression levels to describe performance and compare achievement at different units 

of analysis: 

1. Individual students: To what extent can we use assessment results to distinguish among 

the explanation practices of individual students in terms of learning progression levels?  

2. Classrooms: To what extent can we use assessment results to distinguish among class-

size groups of students in terms of the learning progression levels of students and 

learning that takes place in different classes taught by different teachers? 

3. Programs: To what extent can we use assessment results to distinguish among 

programs, particularly the difference between the Carbon TIME curriculum, designed 

using learning progression research, to support students understanding of carbon 

transforming processes, and programs used by teachers before they used Carbon 

TIME? 
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Validity Arguments for a Monitoring Assessment of Carbon-

transforming Processes 

In this section we develop validity arguments for the Carbon TIME assessment using 

each of the five types of evidence identified in the AERA/APA/NCME Standards. We begin with 

a summary of the learning progression framework and the kinds of claims about students’ 

knowledge and practice that we aspire to make based on that framework. We then provide a 

brief overview of the methods we have used to develop and score the Carbon TIME 

assessments. Finally, we address each of the AERA/APA/NCME criteria, presenting and 

interpreting relevant empirical evidence.  

Learning Progression Framework: The Nature of Claims to Be Evaluated 

For learning progression-based assessments to be useful as monitoring assessments, 

we need to be able to make claims about learning progression levels of the students that we are 

assessing. The domain we focus on is transformations of organic carbon-containing materials at 

multiple scales, from atomic-molecular to global carbon cycling. In particular we focus on 

accounts (explanations and predictions) of carbon-transforming processes (i.e., photosynthesis, 

cellular respiration, combustion, digestion, and biosynthesis).  

Our empirically-based Carbon Learning Progression Framework for students’ evolving 

language and ideas about matter and energy in carbon-transforming processes has been 

described previously (Jin & Anderson, 2012a; Mohan et al., 2009) and is represented in Figure 

2. The rows in Figure 2 represent four levels of achievement, or stages in the transition from 

informal or force-dynamic explanations (Pinker, 2007; Talmy, 1988) to scientific reasoning: 

• Level 1: Pure force-dynamic explanations: Students’ explanations focus on actors and 

enablers, using relatively short time frames and macroscopic scale phenomena. Events 

are connected by cause and effect rather than by tracing matter and energy.  
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• Level 2: Elaborated force-dynamic explanations: Students’ explanations continue to 

focus on actors and enablers, but they add detail and complexity, especially at larger 

and smaller scales. They include ideas about what is happening inside plants and 

animals when they grow and respond, for example, and they show awareness of larger 

scale connections among phenomena, such as food chains.  

• Level 3: Incomplete or confused scientific explanations: Students show awareness of 

important scientific principles and of models at smaller and larger scales, such as atoms 

and molecules, and relationships among populations in ecosystems. They have 

difficulty, though, connecting accounts at different scales and applying principles 

consistently to constrain their explanations. 

• Level 4: Coherent scientific explanations: Students successfully apply fundamental 

principles such as conservation of matter and energy to phenomena at multiple scales in 

space and time. They give complete and accurate accounts of all of the matter and 

energy in a system before and after an event and constrain their explanations by laws of 

conservation of matter and energy. Level 4 explanations are aligned with the 12th grade 

expectations described in the NRC Framework for K-12 Science Education (2012) and 

Next Generation Science Standards (NGSS Lead States, 2013). 
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Figure 2: The Carbon Learning Progression Framework 

Our original work was based on data from students across an age span from upper 

elementary school through college. Carbon TIME, however, is a middle and high school 

program. Level 1 explanations are relatively rare among these students, and for reasons we 

describe below, assessment items that distinguish Level 1 from Level 2 performances are of 

limited use for assessing performances at Levels 3 and 4. Therefore the Carbon TIME 

assessment system does not distinguish Level 1 and Level 2 performances, focusing on 

distinctions among Levels 2, 3, and 4. The framework also contains five different contexts (the 

columns in Figure 2) in which we ask students to reason about carbon transforming processes. 

In each context students have to reason using one or more carbon transforming process (i.e., 

photosynthesis, cellular respiration, combustion, digestion, biosynthesis).  

Thus each level of the learning progression encompasses a wide range of 

performances: predictions and explanations of different processes, in different contexts, at 

different scales. A key claim implicit in the structure of the framework is that these performances 

are all related. Students have underlying approaches to making sense of the world that lead to 

predictable similarities in their accounts of carbon-transforming processes in different contexts. 
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Mastering scientific discourse involves learning and applying principles (especially conservation 

of matter and energy) and models (especially atomic-molecular models) that are applicable 

across processes. We also claim that lower-level students do not see scientific connections 

among contexts, but nevertheless provide similar accounts among contexts because they draw 

on a common pool of linguistic and conceptual resources to construct their accounts. These 

claims are empirically testable. We present and discuss relevant evidence in the sections on 

response processes and internal structure below. 

The claims above relate mostly to the individual student level of analysis (Research 

Question 1). We note that since we intend to use the Carbon TIME assessments as monitoring 

assessments, there are related claims at the classroom level and the program level that we 

want to evaluate (Research Questions 2 and 3).  

Methods overview 

In this section we briefly describe key aspects of the methods we used to develop the 

Carbon TIME assessments and to collect and analyze validity data. These methods are 

described in more detail in other publications, including those referenced above. 

BEAR Assessment System 

Developing and validating an assessment that meets the empirical and conceptual 

criteria is a complex, iterative process. The NRC report Knowing What Students Know (2001) 

represents this process with an Assessment Triangle. The BEAR Assessment System (Wilson, 

2009; Wilson & Sloane, 2000) uses four interrelated components to create a coherent 

assessment system: 

• Construct Maps: Theoretical learning progression framework 

• Items Design: Development of assessment items 

• Outcome Space: Ordered set of student performances 

• Measurement Model: Item response theory (IRT) analysis  
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These components align with the NRC’s Assessment Triangle; the construct maps 

represent the cognition vertex; the items design the observation vertex, and the outcome space 

and measurement model the interpretation vertex. 

The first and most important of the components are construct maps, which are 

qualitatively ordered levels of performance in a concept or skill of particular importance. 

Constructs and levels of performance are derived partly from theories about how knowledge 

and practice are organized and partly from empirical research data. In our work construct maps 

may be seen as a learning progression framework. For a more detailed description of these 

building blocks and their relationship to principles and products, see Wilson (2009). This system 

shares similarities with other assessment design systems, such as Evidence-Centered Design 

(Mislevy, Steinberg, & Almond, 2003); in fact, the two have been used in concert in the 

Principled Assessment Designs for Inquiry (PADI) project (Mislevy, Hamel, et al., 2003). 

Carbon TIME Assessment 

Carbon TIME Assessment development began in 2003. Each year we have developed 

or refined the assessment, used it to describe student achievement, and collected validity 

evidence for the learning progression framework. (Jin & Anderson, 2012a, 2012b; Mohan et al., 

2009). This current work shifts our focus from the validity of the framework as a way of 

understanding student thinking to the validity of the assessment as a way to compare the 

learning progression levels among individual students, groups of students in the classrooms of 

different teachers, and of students in different programs.  

The current Carbon TIME item pool contains items that typically include a series of 

forced choice questions followed by an open-ended question where the students are asked to 

explain the reasoning behind their forced choice selections (see Table 1 for the most current 

version of the assessment; see supplementary information for current and past item text). There 

are three forms of the assessment, with an average of 15 items per form, 10 items from the 
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Carbon TIME pool and 5 items about Matter and Energy from the American Association for the 

Advancement of Science (AAAS) Project 2061 Science Assessment 

(http://assessment.aaas.org/) we included as external validity evidence. Each form has two 

Carbon TIME (forced choice plus open-ended) and two AAAS forced choice items as linking 

items, meaning that these items also appear on other forms. The assessments change every 

year due to the iterative nature of our work.  

Table 1: Carbon TIME assessment used in 13-14 with Cohort 3. The assessment has three 

forms (A, B, C) which are linked by overlapping items and, as a whole, has items from each 

context in the Carbon Learning Progression Framework (Figure 2). * indicate Carbon TIME 

items not scored using the learning progression framework2. 

Form A B C 

Plants ENERGRASS 
OAKTREE 
PLANTDIEDECAY* 
PLANTMAS 

ENERGRASS OAKTREE 

Animals   BODYHEAT2 
CRICKETMAS 
FATLOSS 12-13 
GIRLGROW 
MOUSEDIE* 

Decay BREADMOLD 
COMPOSTB 
DECAYTABLE 
POTATO 

  

Burning BRNALCOHOLMAT BRNMATCHEN 
BRNMATCHMAT 
MATERIALS* 
OCTAMOLE 
WAXBURN 

 

Large 
Scale 

FOODCHAIN12-13 BIOMASSPYRAMID 
KLGSEASON 
FLBULBS 13-14 
FOODCHAIN 12-13 
KLGOVERALL 

KLGLOCAL* 
KLGOVERALL 
KLGSEASON 

Inquiry   MIKE* 
GLUBEX* 
LUCIA* 

AAAS: 
included 

for 
external 
validity 

ANIMGROWTH 
BUBBLES 
FOODWEB 
MILK 
VINEGAR 

ANIMGROWTH 
INTRAVEN 
MILK 
PLANTFOOD 
PLFDSOURCE 

ANIMGROWTH 
MILK  
PLANTDIE  
SUNTREE 
WATERFOOD 
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Study Populations 

Carbon TIME is an NSF-funded development and research project for which the goal is 

to develop a curriculum to help middle and high school students learn how to account for the 

chemical changes—carbon transforming processes—that are responsible for the structure and 

functions of all living systems and that support our lifestyles. The curriculum will be publically 

available on the BSCS website in June, 2015. It was piloted during development by three 

cohorts of teachers who each taught at least three out of six curricular units (at least six weeks 

of instruction) from pilot versions of the Carbon TIME Curriculum (Anderson et al., 2015). Each 

year piloting teachers administer the Carbon TIME Assessment to their students at the end of 

the school year before they teach the Carbon TIME Curriculum (baseline data collection) and as 

pre- and post-tests.  

The teachers and students in Cohorts 1 and 2 were from seven locations: rural 

southwest Michigan; Seattle, WA; Bellevue, WA; Baltimore, MD; rural and suburban Colorado; 

and Santa Barbara, CA. The teachers and students in Cohort 3 are from those seven locations 

plus additional schools in Montana, Pennsylvania, Oregon, Florida, Indiana, and Minnesota. 

Each cohort included students from a range of grades (i.e., 6th – 12th grade) and in a range of 

course types (e.g., 7th grade Life Science, 9th grade Biology, AP Biology). We collected over 

10,000 written student assessments; this report is based on a sample from these assessments. 

For Cohorts 1 and 2, we randomly sampled 60 baseline and post-assessments from teachers 

who had more than 60 students and 30 matching pre-assessments from those post-assessment 

students (Table 2). For Cohort 3, we only sampled one class period of students per teacher for 

all three time points. Sometimes we are missing an assessment time point (e.g., baseline, pre, 

post) for a teacher and that teacher was excluded due to lack of data for relevant comparisons. 

The results presented below are from the students in Cohort 3, our most diverse sample, but 

which is also representative of results from the other two cohorts. 



Validation of a Learning Progression-based Monitoring Assessment 

Table 2: Summary of written data analyzed. The table contains the number of teachers in each 

cohort and the number of baseline, pre and post Carbon TIME assessments analyzed. 

 # of 

teachers 

# of Assessments 

Baseline Pre Post Total 

Cohort 1      
Middle School 5 233 80 200 513 

High School 14 492 394 737 1623 
Cohort 2      

Middle School 4 101 122 234 457 
High School 16 83 446 733 1262 

Cohort 3      
Middle School 16 375 436 350 1161 

High School 38 642 1,049 682 2373 
Totals 93 1926 2527 2936 7389 

 

Assessment Analysis 

To analyze student achievement, we coded each student response to the open-ended 

assessment items according to the Carbon Learning Progression Framework (Jin & Anderson, 

2012a; Mohan et al., 2009).2  For each item, one researcher coded all responses and another, 

more experienced researcher coded a randomly selected 10% of those responses as a 

reliability check. If there was less than 90% agreement of assigned codes for this 10% of 

responses, the coders met to discuss any issues with the scoring rubric or its interpretation. The 

full data set was then recoded and another 10% of responses coded as an independent 

reliability check. This process continued until >90% agreement was reached.  

                                                
2 While all items on the Carbon TIME assessment were related to matter and energy in carbon cycling, 2 
items in 11-12, 3 items in 12-13 and 7 items in 13-14 could not be coded using the Carbon TIME Learning 
Progression Framework. These items can be categorized into three types: 1) items about how energy is 
stored in organic matter, thus not asking students how matter or energy is transformed, 2) items focusing 
on inquiry and arguments from evidence about tracing matter, and 3) an item about global scale 
atmospheric carbon movement. While these items could not be coded using the learning progression, we 
were able to develop scoring rubrics that we used to provide ordinal codes to use for analysis. 
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After all open-ended responses were scored, an item response model, specifically a 

modification of the Partial Credit Model (a Rasch-family model for polytomous data developed 

by Wright & Masters, 1982), was used in the analysis of the data. Individual forced choice items 

were summed across each set referring to the same stimulus materials, and the weights of the 

resulting item scores were adjusted so that all items had the same maximum value (i.e. 2.0) and 

thus made the same contribution to the total proficiency estimate (e.g., OAKTREE in Figure 3 

has five forced choice items that were summed and scaled to determine a total forced choice—

TFC—score for OAKTREE). Such models produce estimates of item difficulties, difficulties of 

steps between levels of an item, ability or proficiency estimates for persons, and measures of fit 

for individual items and persons. We used the ConQuest 2.0 software for item response 

modeling analyses (Wu, Adams, Wilson, & Haldane, 2007). In the analysis phase, we first 

checked whether item difficulties showed drift across years, and concluded that the 

measurement invariance of the items held over the period of the data collection we use in this 

study.  

ConQuest 2.0 provides several different methods for producing person proficiency 

estimates; we chose the Weighted Likelihood Estimation (WLE) method, as it produces the least 

bias at the individual person level (Warm, 1989). 

In order to convert proficiency estimates (in logits3) to learning progression levels, we 

computed cut scores as the median of the item thresholds on the logit scale (0.24 between 

Level 2 and Level 3, and 2.01 between Level 3 and Level 4) (H. Shin, Choi, & Draney, 2012). 

Once the students had been assigned proficiency levels, we used these cut scores to determine 

whether they were most likely to be at Level 2, 3, or 4, or at the boundaries between the levels. 

Readers interested in the details of the models used, and the software used to fit these models, 

should refer to Adams, Wilson, and Wang (1997) for technical details of the model, and to Wu et 

                                                
3 Logits are defined as the log odds of providing a response at a given level versus one lower. 
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al. (2007) for the ConQuest software. We used the R Package ‘WrightMap’ to draw Wright maps 

and item fit plots (Irribarra & Freund, 2014). 

Interview Comparison 

To collect validity evidence with regards to response processes, we compared students’ 

written assessment responses to their responses to semi-structured clinical interviews to a 

similar prompt (Padilla & Benítez, 2014). We coded and analyzed pre- and post-interviews of 

students of Cohort 2 teachers. The teachers conducted the face-to-face interviews during 

school year before and after Carbon TIME instruction. The teachers were instructed to choose 

two students that represented the range in academic success of the typical students in their 

classroom. Teachers were provided with semi-structured interview protocols consisting of 12 

tasks (see supplementary materials for full text of the interview protocol). One task, 

TREEGROW, was aligned with the written item OAKTREE, an item that was on two thirds of 

written tests administered. The interviews were video recorded and the audio transcribed for 

analysis. Interviews that were performed within one month of a written assessment were 

analyzed (n= 49 for full interview v. written test comparison, n=31 for TREEGROW v. OAKTREE 

comparison, some teachers administered the written assessment and interview assessment for 

the same time point [pre or post] months apart). The interview as a whole and the OAKTREE 

aligned task were analyzed using the Carbon Learning Progression Framework (Jin & 

Anderson, 2012a; Mohan et al., 2009). To evaluate how similar students performed in the 

interviews and on written assessments we 1) tested the correlation between the interview 

learning progression level estimated student proficiency on the written assessment using a 

Spearman’s rank correlation and 2) compared student learning progression levels on the 

TREEGROW interview task and the OAKTREE written item. 
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The following sections on reliability and validity evidence include further methodological 

details and descriptions of how we used the described methods and analysis to construct a 

validity argument. 

Results: Discussion of Reliability and Validity Evidence 

 The methods summarized above provide evidence relevant to reliability and each of 

the five AERA/APA/NCME validity criteria. In this section we present that evidence and discuss 

its implications for the three kinds of claims we want to make—about learning progression levels 

of individual students, classes taught by different teachers, and the Carbon TIME program as a 

whole. As noted above, there is an order to the five validity criteria. The first two focus primarily 

on qualities of individual items; the third focuses on the coherence of instruments containing 

multiple items; the fourth focuses on relationships among instruments measuring related 

constructs; the final type of evidence focuses on the role of assessment in education systems.  

Reliability 

Two types of reliability evidence were collected for these data. First, we determined the 

internal consistency of the Carbon TIME data, using the IRT model described above. 

Reliabilities were quite high: about 0.84 for the Carbon TIME assessment. Second, we used the 

proportion of exact matches from the 10% of responses that were independently double-scored 

to give evidence of inter-rater reliability. In all cases, the proportion of exact matches was above 

90%.  

1. Validity evidence based on test content 

The first AERA/APA/NCME criterion focuses on the Observation vertex of the 

Assessment Triangle (Figure 1). For traditional science monitoring assessments, this criterion 

focuses on the scientific content of questions and student responses. For a learning 

progression-based assessment, the assessment should include questions that assess students’ 

proficiencies in tracing matter and energy through carbon-transforming processes at different 
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scales in multiple contexts—essentially Level 4 in the learning progression framework above. 

Table 1 shows the alignment between the contexts of the framework and the Carbon TIME item 

pool for the Cohort 3 assessments (see supplementary material for similar tables for Cohorts 1 

and 2 assessments). 

For a learning progression-based assessment, meeting these scientific content criteria is 

necessary but not sufficient. The Carbon Learning Progression Framework (Figure 2) 

encompasses performances involving different processes, in different contexts, at different 

scales, at different learning progression levels. Successful monitoring assessments should elicit 

this range of performances. That is, when constructing the assessment items, we need to make 

sure that the responses students provided were at all three levels of interest (Levels 2-4). We 

have reported on item and assessment design challenges before (Jin & Anderson, 2012b). We 

used the following learning progression item design criteria to write items that capture this 

diversity of responses: 

• Items should be designed to elicit a range of possible responses, not just correct and 

incorrect answers (N. Shin, Stevens, & Krajcik, 2010). Do items elicit potential indicators for 

all levels of the learning progression framework or are they only useful for a limited range of 

students? 

• Items should signal to students that scientific reasoning is preferred. Our theory is that 

higher level students are “bilingual:” They are capable of producing higher-level or lower-

level responses depending on their judgment of which are appropriate for a particular 

situation, so items that are too vaguely or informally worded are likely to produce lower-level 

responses even from students who are capable of higher-level responses.  

• Items should be accessible to lower-level students. Items must contain vocabulary and 

situations that are interpretable for students at all levels. It is a challenge to construct items 

that are valid at all 4 levels (Jin & Anderson, 2012b), so our goal for this assessment was to 

develop items that elicited responses at Levels 2-4. Therefore our goal is that every item 
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should give students an opportunity to choose between force-dynamic and scientific 

discourse, while signaling a preference for scientific discourse. 

• Items should be scaffolded enough to meet the goals above but not too much. We need to 

design items that provide sufficient scaffolding as to indicate scientific reasoning is required 

but that are not over-scaffolded to enable students with lower-level knowledge to produce 

higher-level responses. In particular we were concerned about (a) forced choice items for 

which students may be able to recognize higher-level responses that they are incapable of 

producing, and (b) questions that can be answered through procedural display, such as 

producing memorized chemical equations whose meaning the students do not understand. 

• Items should be efficient to assess. This means in particular finding an appropriate balance 

between easily-scored forced choice questions and short-answer questions that elicit 

performances closer to our learning progression construct, which focuses in particular on 

explanation and prediction practices (Figure 2). 

 Figure 3 contains an example item, OAKTREE, which meets these criteria. It is a 

multiple forced choice plus open explanation item that asks students to explain where the mass 

of the plant comes from. OAKTREE elicits a range of responses, words like mass and atoms 

and molecules cue student who are able to provide higher level responses to provide them, and 

the familiar scenario of tree growth allows lower level students to provide answers.  
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Figure 3: Text of OAKTREE item on Carbon TIME assessment 

2. Validity evidence based on response processes 
This criterion focuses in particular on the Interpretation vertex of the Assessment 

Triangle (Figure 1). If we have items that elicit student responses covering all the levels and 

dimensions of the learning progression framework (Figure 2), we still have to ask how well those 

responses represent students’ understanding of the underlying construct. For example, forced 

choice items are often excessively scaffolded: Students can recognize the “best answer” even if 

they don’t really understand it. On the other hand, open explanation items are often not 

scaffolded enough: Students who are capable of writing higher-level responses assume from 

the wording of the question that a simpler response is sufficient. For this determination we rely 

mainly on students’ responses; we need to empirically determine that the assessment items do 

elicit responses that can reliably and validly sorted into levels. To do this we must carefully 

construct scoring rubrics and compare students’ written and interview responses. 

Constructing scoring rubrics. Coding reliably is an important step to producing good 

measures of student understanding. Therefore we designed our scoring rubrics (see Table 3) to 

be clearly interpretable with little training and routinely achieve 90% exact matches with 

undergraduate coders. However, such measures of exact match are internal to a single item. 

They answer the question, how similar are different coders in applying the same rubric to the 

same set of responses? 
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To answer questions about validity of learning progression-based scoring rubrics, where 

we are making an argument that students consistently respond in a way described in our 

learning progression framework, we need to align item scoring rubrics to the learning 

progression framework and with each other. This is an iterative process which includes editing 

items, rubric construction and alignment, coding, IRT, and developing a shared understanding 

of the reasoning that students at each level are relying on to produce their answers (Yao, 

Berson, Ayers, Choi, & Wilson, 2010). This type of validity evidence is based on a qualitative 

judgment by researchers—not necessarily based on statistics or cut-off values.  

In Table 3 you can see the final scoring rubric for OAKTREE with specific indicators of 

Level 2, 3 and 4 reasoning aligned with the general level descriptions. You can also see student 

exemplar responses matched to each level. For example, in the level 2 exemplars, students are 

not describing changes in mass of the tree as due to the movement of atoms into or out of the 

tree. Whereas, Level 4 responses trace mass changes to the movement of atoms and 

rearrangement of atoms into new molecules. 
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Table 3. OAKTREE Scoring Rubric 

  General Description OAKTREE Specific Description Student Exemplars 

Level 4 Correct descriptions of matter 

and energy transfers through 

processes at multiple scales 

(from molecules and cells to 

organisms and ecosystems). 

Indicators: 

1. Explain that most of the oak's dry matter 

comes from air/CO2 (might include other 

complementary sources like water and soil, 

but definitely recognizing CO2/air) with no 

portion of them becoming energy OR  

2. Trace the carbon (and maybe 

complementary sources like water and soil, 

but definitely recognizing CO2/air) into part 

of tree's weight, glucose, or other organic 

molecule after undergoing 

photosynthesis/metabolic process with no 

portion of them becoming energy 

(4.1) I choose that the mass comes from the 

air and some from the soil because, most or 

all of the mass comes from carbon which is 

in the air, but some also comes from the 

nutrients in the soil, but not a lot does. No 

mass comes from the water or sunlight. 

 

(4.2) The tree takes in air, water, sunlight, 

and nutrients. It then converts the air and 

water into food which gives it mass. 

Level 3 Attempts to describe matter 

and energy transfers, but with 

errors (such as confusing 

matter and energy, forgetting 

to account for the mass of 

gases). 

Indicators: 

1. Explain tree's matter comes from air/CO2, 

but with portion of tree mass coming from 

sunlight (energy to matter conversion) OR 

2. Describe photosynthesis as contributing 

to weight gain (do not need to use the word 

photosynthesis. i.e., photosynthesis or 

sunlight as making food, glucose, or sugar) 

without tracing CO2/air into the plant. OR 

3. Explain that enablers transform into 

cells/tree structure/cellulose (must show 

understanding that enablers become tree)  

(3.1) The tree took air and sunlight and 

through photosynthesis changed it to 

glucose which gave the tree its mass. 

 

(3.2) The oak tree completes photosynthesis 

and creates carbohydrates to help it grow.  

 

(3.3) An oak tree has cells, cells multiply and 

make matter. Some of the oaks matter 

comes from the environment (like dirt and/or 

water), but the main increase in mass comes 

from growth and development 
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Level 2 Elaborated force-dynamic 

accounts: Students' accounts 

continue to focus on actors, 

enablers, and natural 

tendencies, but they add 

detail and complexity, such 

as the idea that different 

organs have different 

functions. 

Indicators: 

1. List various enablers (e.g., sunlight, soil 

nutrients, water, air) as contributing to plant 

growth, but does not differentiate air from 

other enablers as a main source for matter 

OR 

2. Explains that the tree will gain mass 

because it grows and/or becomes larger. 

(2.1)  An oak tree gains mass as it receives 

sunlight and water. It also gains mass as it 

receives minerals from the soil surrounding 

its roots.  

 

(2.2) As the oak tree grows, the larger the 

tree will become and that will cause the 

mass to increase. 
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Comparing written responses with interviews. Comparing written responses with 

interview transcripts provides evidence for written items eliciting responses that are aligned with 

student learning progression level as we consider our interview analysis as the gold standard for 

classifying student understanding. 

Using interviews of students from Cohort 2 we are able to make two types of interview-

written comparisons. First we can look at overall performance on the written assessment and 

compare it to a students’ overall interview learning progression level (Figure 4). While there is 

some spread, the correlation demonstrates that students’ performance on the interview and 

assessments are highly related (Spearman rank correlation = 0.81, p>0.01, n=49). 

  

Figure 4: Relationship between student proficiency measured by interviews and written 

assessments 

In addition to looking at overall performance, we can investigate students’ responses on 

similar interview and written items. Figure 5 and Table 4 report on one such comparison. The 

teachers interviewed 31 students who had the OAKTREE written item on their assessment 

form. Of those 31 students, 81% had responses at the same learning progression level for the 

written item and interview task (gray cells of Figure 5). You can see in the first three rows in 

Table 5 (Students A-C) examples from these 25 students that demonstrate good alignment 
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between the written and interview items. The last two rows (Students D-E) provide examples of 

comparisons for the 20% of students whose written and interview levels did not align. When 

students were misaligned they often added more detail to their answer in an interview, such as 

Student D, who described how glucose was made in his interview and revealed his 

misunderstanding of chemical energy. Student E demonstrates another common reason for 

misalignment, a student being vague in writing but giving a rich description when prompted in an 

interview. While the Carbon TIME written items sometimes over- or under-estimate a student’s 

true performance, generally due to students’ brevity in writing, the interview-written comparisons 

provide good evidence for the Carbon TIME written item validity. 

 

Figure 5: Comparison of learning progressions levels for interview and written student 

responses to similar items, TREEGROW and OAKTREE 
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Table 4: Comparison of student responses to a similar written and interview items. 

Student Response to OAKTREE Written 

Item  

Response to TREEGROW Interview Task 

A: 

Consistent 

Level 4 

Level 4: The tree needs the CO2 in air 

to perform photosynthesis, sunlight 

gives energy, but no mass. Water 

provides some mass, while soil 

nutrients provide very little. 

Level 4: the soil only has minerals that are not 

used for growth….They're taking in the carbon 

dioxide which is part of photosynthesis. … It's a 

process where they're using the carbon dioxide 

atoms and sunlight and water to make glucose 

so they can grow…. The sun provides the 

energy that's needed to perform photosynthesis 

but doesn't directly give them any mass. 

B: 

Consistent 

Level 3 

Level 3: atoms from other objects turn 

into the tree 

Level 3: Maybe it like helps to like give the tree 

more mass because it couldn’t grow if it didn’t 

have things that are going into it to like give it 

more material to make more of itself I guess. 

C: 

Consistent 

Level 2 

Level 2: The soil nutrients act as food 

for the oak tree which makes the oak 

tree gain mass. 

Level 2: The growth of the tree because it grows. 

Like everything grows and I think it might be in 

the branches if that’s what you’re trying to ask 

me. Like the leaves grow. But I’m not sure 

exactly where it comes from….Fertilizer. 

D: 

Inconsistent 

higher level 

Level 4: An oak tree gains mass by 

absorbing CO2 in the surrounding air 

and using it to build new molecules 

like the walls of the cell. There is 

really not water in the dry mass of the 

tree. Also light energy does not 

contribute to the mass of the tree, just 

its chemical energy. Some of the oak 

trees mass comes from nutrients in 

the soil, which the tree absorbs 

through water. 

Level 3: It needs oxygen, carbon dioxide, some 

nutrients; nitrogen, phosphorous, and it's mostly 

made up of carbon dioxide which it gets from the 

CO2 and air.… [The tree] absorbs the light 

energy from the sun and uses that power turning 

the other atoms into chemical energy in the form 

of glucose. 

E: 

Inconsistent 

lower level 

Level 2: something to grow and I did 

an experiment that showed that 

plants do not need sunlight to grow. 

Level 3: with carbon dioxide and water, basically 

when they make into a chemical reaction which 

would create glucose which is C6H12O6 … it 

would create food for the tree… doesn’t need 

any sunlight to come down for it, even though we 

know photosynthesis but that doesn’t really 

matter right now at that moment…I’ve talked 

about glucose and it won’t really need that 

sunlight. Mostly the sunlight is just maybe to 

maybe it will be absorbed to make it feel better 

or something like that but they just, it just doesn’t 

really need that for that moment. 

3. Validity evidence based on internal structure: Item response theory analyses 

Validity evidence based on internal structure is also concerned with the “interpretation” 

vertex of the assessment triangle (Figure 1), but at a larger scale. The first two kinds of validity 

evidence focused primarily on qualities of individual items. Evidence based on internal structure 
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focuses on how well the individual items “fit together” to produce a more general picture of the 

proficiency of an individual student or of the students in a class. We use IRT models to examine 

internal structure validity, specifically Rasch-family models. The use of such models allows us to 

empirically evaluate the relationship between the learning progression level scores on the items, 

and the overall person proficiency distribution, as well as to evaluate the fit of the model to the 

data at the individual item and student level. In this section we use these models to address 

three kinds of questions: 

• How well individual items and individual students fit within the overall structure of our 

measurement model and align with one another? 

• To what extent can we use assessment results to distinguish among the explanation 

practices of individual students in terms of learning progression levels? (Research 

Question 1) 

• To what extent can we use assessment results to distinguish among class-size groups 

of students in terms of the learning progression levels of students and learning that takes 

place in different classes taught by different teachers? (Research Question 2) 

Item and student fit to the measurement model 

Rasch-family models provide several ways to analyze individual items and students in 

comparison with one another and in the context of the model as a whole, including Wright maps, 

item fit statistics, and person fit statistics. We discuss each below.  

Wright maps. Figure 6 shows a Wright map based on the learning progression aligned 

open explanation-based items given in the Carbon TIME Assessments. In these data, item 

responses were coded into Levels 2 through 4. The red dots indicate the thresholds from Level 

2 to 3 for the items, and the blue dots from Level 3 to 4. Items are arranged from empirically 

easiest overall, to most difficult. 
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[

Figure 6: Wright map showing learning progression level thresholds for the explanation-based 

learning progression level
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In general, most of the thresholds from Level 2 to 3 are in the same logit range, and well 

separated from the thresholds from Level 3 to 4. This implies that our theoretical predictions 

about students’ thinking are mostly well-supported by the data. However, there is overlap at the 

extremes, such that the thresholds from Level 2 to 3 for the most difficult items overlap 

somewhat with the thresholds from Level 3 to 4 for the easiest items. Interestingly, patterns can 

be observed in the difficult items (most of which have to do with decay or large scale carbon 

cycling), and the easiest items (many of which provide more scaffolding). Observation of such 

patterns can lead to revision of items (e.g., rewriting the easy items to be less scaffolded), or to 

new understandings of student cognition (e.g., that understanding of decay is particularly 

difficult for students in middle and high school).  

There are also several items for which the thresholds from Level 2 to 3, and Level 3 to 4, 

are not well differentiated (i.e. they have little vertical distance between them). This means that 

relatively few students are scoring at the middle Level, Level 3. This may mean either that 

attaining a Level 3 is difficult enough that, once students have attained this level, it is only a 

small step to attain Level 4; or alternatively, that attaining Level 4 is relatively easy, and thus 

once students have attained Level 3, they very quickly attain Level 4.  

The majority of the students in the distribution at the left-hand side of Figure 6 fall at or 

below the Level 2 to Level 3 threshold for most of the items. This implies that the most common 

responses are either Level 2, or Level 3, and that Level 4 responses are uncommon. The 

distribution is slightly right-skewed, indicating there are some students who are at or above the 

Level 3 to Level 4 thresholds for most items. These are the students who are most likely to give 

Level 4 responses to most of the items. There are some items for which a Level 4 response 

may be difficult even for these students, however. The most difficult threshold – associated with 

the item labeled BIOMASSPYRAMID, is interesting. This item (see Supplementary Materials for 

full text) asks students about why there is a greater biomass of producers than herbivores than 

carnivores. This item has a relatively easy 2 to 3 threshold, many student are able to describe 
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that there is less food available as you move up the food chain, which is the Level 3 indicator, 

but very few students can describe the loss of matter to carbon dioxide via cellular respiration as 

the reason there is less matter available, the Level 4 indicator for this item. 

Item fit statistics. A second set of tools for examining the internal structure of the 

assessments is fit statistics. Fit statistics provide information about how well the data for an 

individual item or an individual student’s performance are represented by the model we have 

chosen (i.e. the modification of the partial credit model). Fit statistics provide a measure of the 

random variation that is present in the data for a particular item or person. As this is a 

probabilistic model, some amount of randomness is expected. Items that show less random 

variation than expected have low fit statistics, and are usually not a concern. However, items 

with more random variation than expected have a relatively large number of low-performing 

students are doing better than expected on this item, and/or a relatively large number of high 

performing students doing worse than expected. This may indicate several possible issues with 

the item: it may be measuring another dimension in addition to the one of interest (e.g. perhaps 

it has a large reading load or requires more advanced math skills); it may be affected by current 

events (e.g. perhaps the issue addressed by the item has been in the news recently); perhaps 

the wording leads many students to misinterpret the item, and so forth.  

Figure 7 shows a graph of the overall item fit statistics for the Carbon TIME open 

explanation items. Each dot represents a fit statistic, calculated from the empirical data, for one 

item. The gray area represents control limits (0.75~1.33) for the fit statistics (based on Adams & 

Khoo, 1996); dots inside the gray area show acceptable fit. In this case, only two items fell 

outside the control limits and may have some fit issues that should be investigated. When we 

examined the items, the multiple choice for APPLEDECAY, and TREEGROW, and student 

performances on the item, to see if we could find any problems that should be addressed, we 

did not uncover any issues. However, just as in any set of statistics based on random variation, 
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one or two items out of a large group of items showing significant random variation should not 

be cause for concern. 

In addition to the item fit information provided by IRT, we have also calculated item-total 

correlations (point-biserial correlations for dichotomous items, Pearson correlations for 

polytomous items). These are provided in supplementary materials. Item-total correlations are 

used to determine item fit in classical test theory; they measure the relationship of a given item 

to the rest of the test. Various minimum standards for item-total correlations have been 

suggested. One limitation with such statistics is that they will tend to be low for items that are 

either very easy or very difficult (in essence, these items show little variation, and hence there is 

a ceiling on the size of the correlation they can show). However, IRT fit statistics often show that 

such items have acceptable fit, and in an assessment that is to be used for pretest-posttest 

analysis, it is a good idea to have some items that are very easy, and some that are very 

difficult, to capture the full range of proficiencies in both the pretest and the posttest. 

 

Figure 7: Plot of item fit  

Person fit statistics. Just as fit statistics can be calculated for each item, they can also be 

calculated for each person. The interpretation of such statistics is similar to those for items; low 

fit statistics indicates sets of responses that are very regular; high fit statistics indicate more 

random variation than expected. 

A distribution of fit statistics across all assessment events for students (n=7,389) is 

shown in Figure 8. In this figure, students with fit statistics below the left red line (the lower 
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bound of the acceptable range) show very regular responses. It can be seen that a large 

proportion (38.7%) of students falls in this range; this is additional evidence of the consistency 

of student reasoning across a wide variety of contexts; since the items were designed to 

perform in this way, this is not cause for concern. In addition, the distribution of fit is right-

skewed; 10.5% percent of students fall above the right red line (the upper bound of the 

acceptable range). These students are showing more random variation in their responses than 

expected. More research should be done to determine what might be causing this phenomenon. 

In particular, interviews for a number of these students about what they are thinking as they 

answer items might be useful.  

 

Figure 8: Plot of person outfit 

Research Question 1: Assigning Learning Progression Levels to Students 

A detail to note on the Wright map (Figure 6) is the horizontal lines drawn through the 

sets of item thresholds. These represent “cut scores” between the learning progression levels, 

based on the empirical results of our data analyses. We have chosen to put them at the median 
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thresholds for each transition (the median of the thresholds between Level 2 and 3, and 

between Level 3 and 4). These median thresholds serve as the cut points for each transition 

and allow us to characterize students’ overall performances in terms of their learning 

progression levels. Students below the first cut point are most likely to perform at Level 2 for 

most items; students between the two cut points are most likely to perform at Level 3, and 

students above the second cut point at Level 4. This allows us to characterize students in terms 

of their most likely performance, rather than simply the raw score on the items they took (without 

considering the difficulty of that particular set of items). 

One issue that must be considered when determining which learning progression level to 

assign to a student is the issue of measurement error. Although we know the responses a 

student gave to a particular set of items, we also know that these responses may be affected by 

a number of issues other than simply the student’s overall proficiency. These may include 

issues affecting the student (e.g. tiredness), issues affecting the scorer (e.g. distraction), and 

issues involving the particular item (e.g. the student misunderstanding the item text). We 

therefore need to take this measurement error into account. We do this using a standard error 

associated with each person’s proficiency estimate. This functions very much like the standard 

error of the mean in classical statistics – i.e. there is a 95% probability that the true but unknown 

proficiency value lies within a 2 standard error margin around the estimate (assuming a normal 

distribution). Especially for students whose proficiency estimate lies near one of the cut points, 

this may affect their assignment to a learning progression level.  

This is illustrated in Figure 9. This figure shows a modification of the person distribution 

shown on the left side of the Wright map for baseline and posttests for students of teachers in 

Cohort 3, still using the logit scale as the vertical axis and including the vertical lines as cut 

points between levels (explained above). The curved line illustrates the person proficiency 

estimates, ordered from smallest to largest, on the open explanation and forced choice items 

(red portions indicate baseline data; blue portions indicate posttest data). We use the 
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combination of forced choice and open explanation items together as the gold standard in this 

figure, as the combination produces the highest internal consistency reliability, and thus reduces 

the standard errors of the person estimates. 

Figure 9: Modified Wright map showing student proficiency estimates, sorted from lowest to 

highest (using both explanation [EX] and forced choice [FC] items), along with standard error 

bands and explanation (EX) estimates 

The gray band around this line illustrates the 68% confidence intervals, assuming a 

normal distribution (i.e. one standard error in each direction) for all of the proficiency estimates. 

The gray band shows some fluctuations depending on the response pattern of the persons. For 

example, if a person has not responded to one or more of the items on the test, the standard 

error band will be larger for that person. As illustrated by the vertical lines, sometimes the 

confidence intervals fall entirely in one of the learning progression regions (for example, the first 

approximately 675 student estimates fall entirely in the Level 2 logit region), while sometimes 

the confidence intervals overlap one of the cut points (for example, from about student 676 to 

about student 925). In the latter case, we are less certain about the learning progression level 

into which a student should be classified – students 676 to 925 may be at learning progression 
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Level 2, but they may also be at learning progression Level 3. Figure 9 also contains triangles; 

these are the estimates of student proficiency for students based on their performance on only 

the corresponding constructed-response explanation items (again, red are baseline data, blue 

are posttest).  

Figure 10 is similar to Figure 9, with the same red and blue circles and shading, only 

now the red and blue triangles illustrate performance only on the forced choice items (using the 

same, anchored item difficulties as Figure 9). It is clear from comparison of the locations of the 

triangles in the two figures that estimates of student proficiency based only on the forced choice 

items deviate more from the overall estimates than estimates based on only the open 

explanation items, particularly at the higher end of the person proficiency distribution. This likely 

contributes to the drop in the variance of the person distribution that has been noted when 

comparing student performance on open explanation items to forced choice items (Draney & 

Shin, 2014). Therefore, the use of exclusively forced choice items to assign students to learning 

progression levels entails a higher degree of uncertainty, and should only be done in low-stakes 

settings that include additional information about student level, such as formative assessment in 

classrooms. 
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Figure 10: Modified Wright map showing student proficiency estimates, sorted from lowest to 

highest (using both explanation [EX] and forced choice [FC] items), along with standard error 

bands and forced choice (FC) estimates 

Research Question 2: Assessing learning in classroom-sized groups of students 

We can also summarize individual students’ proficiency estimates into classroom-sized 

groups and assign these classrooms to a learning progression level. Figure 11a-c displays the 

average classroom performance, with 95% confidence intervals, for Cohort 3 teachers who 

were using the Carbon TIME units for the first time. The figure shows three time points: a) 

“Baseline,” at the end of the school year the year before the teachers participated in the Carbon 

TIME program, b) “Pre”, at the beginning of the school year the teachers participated in Carbon 

TIME, and c) “Post”, at the end of Carbon TIME instruction. As in the case of individual students 

in Figures 7 and 8, the lower horizontal dotted line indicates the Level 2/3 cut point and the 

upper dotted line represents the Level 3/4 cut point. Figure 11a shows that only 3 of 25 

classrooms had an average student proficiency for which the entire 95% confidence interval lay 

in the Level 3 band at the end of the school year before Carbon TIME implementation, while the 

other 22 classrooms were at Level 2 or on the border. Figure 11b indicates very similar results 
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for beginning of year proficiency in these same classrooms, here only one classroom had an 

average student proficiency for which the most of the 95% confidence interval lay in the Level 3 

band. You can contrast these proficiencies with Post Carbon TIME instruction scores in Figure 

11c: 9 classrooms have means and confidence intervals which have moved into the Level 3 

range and one entirely into the Level 4. 

We can calculate student learning gains from pre to post test, and then calculate the 

average student gain score in each teacher’s classroom, with appropriate standard errors. Such 

a graph is shown in Figure 11d, with teachers ordered from lowest to highest in terms of the 

average learning gains of the students in their classrooms. Learning gains were calculated 

using only students with matching pre and posttests. In this panel, rather than show the cut 

points between Levels 2/3 and 3/4 (as this graph shows learning gains and not simple 

performance), we have shown horizontal lines at zero, and at the average learning gain for the 

entire group (about 1.0 logits). Thus, we can see that the 4 classrooms at the far left have 

learning gains that are indistinguishable from zero. 8 of the 25 classrooms, shown to the far 

right, have learning gains that are statistically higher than the overall average. Such an ordering 

allows us to investigate the possible reasons for more or less success in different classrooms. 
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Figure 11a. Classroom learning gains on the Carbon TIME assessment (pre v. post) for the 

same classrooms. The lower dotted line indicate no learning gain and the upper dotted line 

represents the average learning gain. 11b-d. Classroom-level student performance on the 
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Carbon TIME assessment for Cohort 3 classrooms of teachers that did not participate in 

Cohorts 1 or 2 at three time points: a) “Baseline,” at the end of the school year the year before 

teachers participated in the Carbon TIME program, b) “Pre”, at the beginning of the school year 

teachers participated in Carbon TIME, and c) “Post”, at the end of Carbon TIME instruction. The 

lower and upper dotted lines indicate the Level 2/3 and Level 3/4 cut scores. Baseline students 

are different from those in pre and post. Data are plotted as means with 95% CI. 

4. Validity evidence based on external variables: Comparison with AAAS items 

 We embedded 11 items about matter and energy, 5 per form with some as linking items, 

from the AAAS Project 2061 Science Assessment into the Carbon TIME assessment in order to 

collect validity evidence based on external variables. The AAAS Project 2061 Science 

Assessment items are designed to assess students’ conceptual understanding of key science 

ideas as well as test for common misconceptions and alternative ideas 

(http://assessment.aaas.org/). They are well designed items that have undergone rigorous and 

extensive review. Although these items have been designed to measure key ideas in science, 

they have not been specifically designed to target the levels of the learning progression in which 

we are interested; they should correlate well with our measure but would not provide the 

additional learning progression information we want. 

An assessment should be well correlated with other measures that are designed to 

measure similar things. In the multidimensional item response theory analysis we obtained the 

latent correlation between the Carbon TIME items and the AAAS items assessments. The 

correlation between the scores for students on each assessment is 0.60, an indication that the 

two sets of items are indeed measuring related abilities, but not the same. 
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5. Validity evidence based on consequences: Learning gains from Carbon TIME 

project 

The final form of validity evidence focuses on consequences of using the assessments: 

Does using the assessments lead to better educational outcomes?  It is on this criterion that 

evaluations of current science monitoring assessments such as the NRC reports NRC, 2005, 

2014) render some of their harshest criticisms, arguing that the focus of these assessments on 

a restricted range of student performances scored in mechanical ways encourages a focus on 

test preparation at the expense of broader goals of education.  

The Carbon TIME monitoring assessments are part of an instructional system which 

includes the assessment, learning progression framework, curriculum with embedded formative 

assessments and professional development. Figure 12 shows evidence about the 

consequences of using this system for the same sample of students as in Figures 8, 9, and 10. 

At the end of a year of traditional instruction (Baseline, n = 667) and before Carbon TIME 

instruction (Pre, n = 574) mean student  performance is below the Level 2/3 cut point indicating 

students are on average reasoning at Level 2.  

 

Figure 12. Program-wide student performance on the Carbon TIME assessment at three time 

points: “Baseline,” at the end of the school year the year before teachers participated in the 



Validation of a Learning Progression-based Monitoring Assessment 

Carbon TIME program, “Pre”, at the beginning of the school year teachers participated in 

Carbon TIME, and “Post”, at the end of Carbon TIME instruction. The lower dotted line indicates 

the Level 2/3 cut off and the upper dotted line represents the Level 3/4 cut off. Data are plotted 

as means with 95% CI. 

 

Compare these performances to performance of the same students after Carbon TIME 

instruction (Post, n = 574), where students, on average, are reasoning at Level 3. The error bars 

show 95% confidence intervals. Students who experienced Carbon TIME instruction perform 

significantly better than 1) they did at the beginning of the school year (t=19.78, p<0.001, effect 

size=0.94) and 2) students in the same teachers’ classes from the year before (t=13.26, 

p<0.001, effect size=0.77). While these differences are significant and the effect sizes are large, 

you can see from the relationship of the Post Carbon TIME performance and the Level 3/4 cut 

off line we still must make additional progress before the majority of students achieve Level 4 

reasoning, the level of reasoning described in the NRC Framework and the Next Generation 

Science Standards. 

Discussion 

This article begins with a discussion of what Shepard (2013) described as dual purposes 

of assessment: accountability and learning. Penuel, et al. (2014) similarly discussed the need 

for “balancing the goals of supporting and assessing student learning.”  Our current system has 

developed different kinds of tests for these two purposes.  

• For accountability we rely on large-scale assessments designed with careful 

attention to matching the measurement model to responses and relationships with 

other large-scale assessments. These tests are “fair” in the sense that they can be 

administered to all students and scored efficiently; students’ scores can be reliably 

compared across test forms, years, and sites. 
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• For learning we have a variety of assessments that have been developed with 

careful attention to the nature of knowledge and practice that they assess and to 

cognitive and sociocultural models (the “Cognition” vertex of the assessment 

triangle—Figure 1). Learning progression-based assessments, including our own 

prior work (e.g., Alonzo & Steedle, 2009; Gotwals & Songer, 2013; Gunckel et al., 

2012; Jin & Anderson, 2012b; Lehrer & Schauble, 2012; Mohan et al., 2009; 

Plummer & Krajcik, 2010; Rivet & Kastens, 2012;  Shea & Duncan, 2013) are 

included in this category. These assessments have been shown to be valuable for 

the learning functions of assessment—they produce valuable insights into the nature 

of students’ knowledge and practice. 

On the surface, this system of “different tests for different purposes” may seem 

reasonable, but as many critics, including the NRC reports cited above, argue that this system is 

dysfunctional. The mismatch between the knowledge and practices assessed, and between the 

cognitive models that guide development of the learning progression assessments and the 

statistical models that guide development of the large-scale assessment, mean that the 

assessments work at cross purposes.  

So this article reports on a test of concept: The Carbon TIME units include formative and 

summative assessments that are used for individual lessons and units. Is it possible to develop 

an assessment system that is instructionally sensitive to specific curriculum units, and also 

includes monitoring assessments that can be used to assess the impact of the program as a 

whole?  In this article we use the AERA/APA/NCME Standards (2014) to organize evidence 

evaluate the validity of Carbon TIME monitoring assessments for both accountability and 

learning purposes. We conclude with (a) a summary of our arguments for each of our three 

research questions and (b) a discussion of dilemmas or tradeoffs that we have faced in 

designing and enacting these assessments.  
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Summary of Findings for Research Questions 

Evaluations of the items and scoring rubrics using the first two AERA/APA/NCME 

Standards—test content and response processes—provide strong evidence that the Carbon 

TIME assessments are useful for the learning purposes of assessment. They elicit student 

responses encompassing the full range of performances that we targeted for the assessments, 

and there is good alignment between students’ performances on interviews and written tests 

(Table 4 and Figure 3). Evidence aligned with the third standard—internal structure—also 

supports positive evaluations of the items included in the assessments. The items fit the 

learning progression-based statistical model (Figure 7) and the scoring rubrics differentiate 

student responses consistently and reliably with respect to learning progression levels (Figure 

8). 

But what about the accountability purposes of monitoring assessments?  How well do 

the Carbon TIME assessments differentiate more and less successful students, teachers, or 

programs? Ideally we would like assessments that produce both qualitative descriptions of 

learning progression levels and quantitative comparisons for individual students, for teachers or 

classrooms, and for the program as a whole. To what extent do the Carbon TIME monitoring 

assessments meet the AERA/APA/NCME Standards for claims made at each level?  

Individual students. To what extent can we use assessment results to distinguish 

among the explanation practices of individual students in terms of learning progression levels? 

There is substantial error in assigning students to a particular level. The proportion of students 

for who cannot be reliably placed in a level (those in sections for “Level 2 or 3”, “Level 3 or 4” in 

Figures 8 and 9) is sizable. Hence, our ability to distinguish individual students in terms of 

learning progression level is limited. A possible method for reducing this error would be to 

increase the number of items each student takes, thus reducing the estimate error (Figures 8 

and 9); however, we feel that this is not a practical solution; the Carbon TIME assessment 
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already takes most students between 20 and 45 minutes to compete. 

Figure 8 also shows that a number of students do not fit the statistical model predicting 

their performance on individual items. This suggests that for these students (about 10%) there 

are patterns in their responses that are not well predicted by statistical models based the 

learning progression-based frameworks and scoring rubrics. 

On balance, the available evidence supports the notion that the tests of individual 

students can be useful for learning purposes: They provide useful insights into how individual 

students reason about carbon-transforming processes that can guide teachers and curriculum 

developers. However, there are significant numbers of students who are on the borders 

between learning progression levels, or who do not fit the model. Thus the Carbon TIME tests 

might be useful as part of a system for high-stakes purposes such as assigning course grades 

or determining student placements or rankings, but they would not be sufficient. 

Classrooms. To what extent can we use assessment results to distinguish among 

teachers in terms of the learning progression levels of students in their class and the success of 

different teachers in helping students to advance to higher learning progression levels? Our 

results with respect to this research question are presented in Figure 11 and the accompanying 

text. They show that there are significant differences among classrooms in terms of student 

pretest performance, even larger differences in posttest performance, and significant differences 

in pre-post learning gains. Thus the assessments are useful for many learning purposes. For 

example, they can be used to identify classrooms where students are doing significantly better 

and worse than average. This type of monitoring could be used to identify effective teaching 

practices or to track individual teachers’ progress over multiple years. 

As with students, though, using these results for accountability purposes is more 

problematic, particularly if the goal is to evaluate the success of individual teachers. The error 

bars for each individual teacher are large enough that there are significant uncertainties in that 

teacher’s ranking. Furthermore, these statistics say nothing about the many other factors (e.g., 
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student grade level, proficiency in writing and mathematics, school-level support) that affect 

students’ learning. 

Programs. To what extent can we use assessment results to distinguish among 

programs, particularly the difference between the Carbon TIME curriculum and programs used 

by teachers before they used Carbon TIME? As Figure 12 shows, the assessments provide 

unambiguous evidence with respect to this research question. With large samples of students, 

the differences between baseline results (the same teachers using a different program) and 

Carbon TIME posttest results are many times larger than the error bars showing 95% 

confidence intervals. There is no doubt that students learned more of the knowledge and 

practices tested from Carbon TIME than they learned from the previous curricula.  

This is, of course, in part evidence of successful alignment between the Carbon TIME 

curriculum and assessments: The curriculum taught what the assessments tested. Thus the 

data provide evidence for the consequential validity of the curriculum and assessment system, 

but not for the value of the knowledge and practices assessed. That requires a different kind of 

argument that is beyond the scope of this article. 

Tradeoffs in the Design and Development Process 

Our experience in developing and evaluating the Carbon TIME assessments leads us to 

conclude that although continuing improvement is possible on all the criteria, there are also 

inevitable tradeoffs in the design and development process—no assessment can serve all 

purposes well. In this section we discuss three of these tradeoffs. 

Grain size for learning progression levels. There are striking differences among 

learning progression frameworks in terms of the precision in their descriptions of levels. Some 

frameworks are fine-grained, describing multiple levels of achievement and sometimes multiple 

strands associated with different topics or practices (e.g., Alonzo & Steedle, 2009; Lehrer & 

Schauble, 2012). In comparison, the Carbon TIME framework is coarse-grained, using just three 
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levels to describe differences among students in a broad content domain, across a wide range 

of proficiencies.  

Our contention is that learning progression-based monitoring assessments will inevitably 

need to be relatively coarse-grained. If the assessments are to be useful for students 

experiencing different curricula, then they will need frameworks describing learning trajectories 

that are not curriculum dependent. Furthermore, considerations of internal structure, in 

particular, tend to dictate fewer and more broadly defined levels. Penuel, et al. (2014) describe 

a development process similar to ours: the developers of a mathematical learning trajectory 

wanted a fine-grained framework for diagnostic precision (learning purposes), but they also 

wanted results that would enable comparisons among classrooms, teachers, and programs. 

Like us they found that they could not do both with same test. 

Limitations of forced-choice questions. The contrast between Figures 9 and 10 has 

important implications for assessment design. In comparison with our best estimates of 

students’ proficiency, estimates based on students’ written explanations alone (Figure 9) were 

substantially more accurate than estimates based on students forced-choice responses alone 

(Figure 10). This was especially true for more proficient students taking the posttest. This result 

comes after many years in which we have experimented with and evaluated different 

approaches to constructing forced-choice items.  

Our conclusion is this: No assessment consisting of forced-choice items alone has been 

found to accurately assess students’ levels on the Carbon Learning Progression Framework. 

This is partly due to the nature of the practices we wish to assess: We are particularly interested 

in students’ explanations and predictions, so the content validity of forced-choice items alone is 

always suspect. Choosing the correct explanation or prediction is not the same as generating it. 

It is also partly due to the nature of the Carbon Learning Progression Framework: Students who 

are not proficient in using scientific discourse can still identify scientific discourse when they 

choose among possible responses. These conditions prevail, however, in most current work on 
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learning progressions and science assessment generally. 

We note a couple of qualifications to this largely negative conclusion: 

• Forced-choice items contribute significantly to the overall quality of the Carbon TIME 

assessments. In particular, we have found the multiple forced-choice plus 

explanation format to be powerful (see the OAKTREE example in Figure 3). The 

forced-choice questions both scaffold students’ responses and make it clear what the 

students are explaining in their written explanation. 

• We are encouraged by recent work, by our project and others, focusing on 

automated scoring of constructed responses (Haudek, Prevost, Moscarella, Merrill, & 

Urban-Lurain, 2012; Nehm & Haertig, 2011). It appears to us that with appropriate 

item design and construction of scoring rubrics, it will be possible to develop 

machine-scoring algorithms that are as accurate as trained human coders.  

Aligning cognitive and statistical models. Current science monitoring assessments 

can achieve high standards with respect to student and item fit to model in part because the 

models are purely statistical; they are not associated with any notions about the meaning or 

significance of the students’ responses. As noted above, building cognitive models such as 

learning progression frameworks into assessment systems is a primary reform recommendation 

of the NRC reports (National Research Council, 2005, 2014). This recommendation entails 

costs, though, for statistical fit. There are items that provide good information about students’ 

learning progression levels that do not fit the model well, as well as items that align well with the 

statistical model but not the learning progression framework.  Scoring rubrics need to align with 

the learning progression framework as well as differentiating student responses to a particular 

item. Thus we conclude that assessment systems built around cognitive models will generally 

be more difficult to design with high levels of statistical fit. 
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Conclusion 

We conclude with a brief comment on the implications of this research for the role of 

assessment in science education systems. In the United States there is currently a movement to 

reform our school systems by using assessments for high-stakes accountability—for example, 

making school funding and teacher evaluations dependent on assessment results. The reform 

documents cited above argue convincingly that current science monitoring assessments are 

inadequate for these purposes. In this article we present a careful evaluation of a learning 

progression-based alternative using the AERA/APA/NCME Standards. Our evaluation of this 

evidence is that the system is clearly useful for learning purposes and for program evaluation, 

but that results comparing individual students or teachers can only be used with great caution. 

Thus rigorous evidence-based scrutiny leaves us doubtful of any system that relies on current 

science assessments as a primary tool for test-based high stakes accountability. We need to be 

aware of these limitations as we make policy and seek to improve practice in science education. 
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