Descriptors and NGSS Connections for Carbon TIME Assessment Items

The table below classifies each assessment item with respect to scale and student practice. It also has specific descriptors, including whether it focuses on matter and energy, the kind of system it focuses on, and the carbon-transforming process(es) that it focuses on.

The table also lists a performance expectation from the *Next Generation Science Standards* for each item. We note that (a) no single assessment item can "cover" a performance expectation in its entirety, and (b) some items are useful for assessing more than one performance expectations. For a deeper explanation of how *Carbon TIME* assessments and curricula are connected to the three dimensions of *NGSS*, see Three-dimensional Learning in *Carbon TIME*.

Item Name (with	Scale	Student	NGSS	Specific descriptors				
tests the item is on)		Practice						
	Macroscopic Scale Explanation Items							
BODYHEAT2	Macroscopic	Explanation	MS-LS1-7. Develop a model to	• Energy				
(Full Test Form C,			describe how food is rearranged	Animal growth & movement				
Animals)			through chemical reactions forming	Cellular respiration				
			new molecules that support growth					
			and/or release energy as this matter					
			moves through an organism.					
BREADMOLD2	Macroscopic	Explanation	HS-LS1-7. Use a model to illustrate	Matter				
(Full Test Form A,			that cellular respiration is a	Decay				
Decomposers)			chemical process whereby the	Cellular respiration (and digestion)				
			bonds of food molecules and					
			oxygen molecules are broken and					
			the bonds in new compounds are					
			formed resulting in a net transfer of					
			energy.					

Item Name (with tests the item is on)	Scale	Student Practice	NGSS	Specific descriptors
BRNLOGEN	Macroscopic	Explanation	HS-PS1-4. Develop a model to	Energy
(Full Test Form B,			illustrate that the release or	Burning
Systems and Scale			absorption of energy from a chemical	Combustion
			reaction system depends upon the	
			changes in total bond energy.	
BRNLOGMAT	Macroscopic	Explanation	MS-PS1-5. Develop and use a model	Matter
(Full Test Form B,			to describe how the total number of	Burning
Systems and Scale)			atoms does not change in a chemical	Combustion
			reaction and thus mass is conserved.	
CARBON.SS	Macroscopic	Explanation	MS-PS1-1. Develop models to	Matter
(Systems and Scale)			describe the atomic composition of	
			simple molecules and extended	
			structures.	
COMPOSTB	Macroscopic	Explanation	HS-LS1-7. Use a model to illustrate	Energy
(Full Test Form A,			that cellular respiration is a	• Decay
Decomposers)			chemical process whereby the	Cellular respiration (and digestion)
			bonds of food molecules and	
			oxygen molecules are broken and	
			the bonds in new compounds are	
			formed	
ENERGRASS2	Macroscopic	Explanation	HS-LS1-5. Use a model to illustrate	Energy
(Full Test Form A and			how photosynthesis transforms light	Plant growth & movement
B, Plants)			energy into stored chemical energy.	Photosynthesis

Item Name (with tests the item is on)	Scale	Student Practice	NGSS	Specific descriptors
ENERMUSHROOM2 (Decomposers)	Macroscopic	Explanation	S-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism	 Energy Mushroom growth
FATLOSS (Full Test Form B and C, Animals)	Macroscopic	Explanation	HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and formed resulting in a net transfer of energy.	 Matter Animal growth & movement Cellular respiration
GIRLBREATHE (Animals)	Macroscopic	Explanation	HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and formed resulting in a net transfer of energy.	 Matter Animal growth & movement Cellular respiration
GIRLGROWPARTS2 (Full Test Form C, Animals)	Macroscopic	Explanation	HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon- based molecules	 Matter Animal growth and movement Digestion and Biosynthesis

Item Name (with tests the item is on)	Scale	Student Practice	NGSS	Specific descriptors
MATERIALS3 (Full Test Form C, Systems and Scale)	Macroscopic	Explanation	MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures	 Matter & energy Organic & inorganic materials (non-LP items)
MOUSEDIE2 (Full Test Form C, Animals)	Macroscopic	Explanation	MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism	 Matter & energy Animal growth & movement Organic & inorganic materials (non-LP items)
OAKTREEPARTS2 (Full Test Form A and C, Plants)	Macroscopic	Explanation	MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.	 Matter Plant growth & movement Photosynthesis (and biosynthesis)
OCTAMOLE (Full Test Form B and C)	Macroscopic	Explanation	HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	MatterBurningCombustion
PLANTDARK (Full Test Form A and C, Plants)	Macroscopic	Explanation	MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.	 Matter Plant growth & movement Photosynthesis (and cellular respiration)
PLANTDIE (Plants)	Macroscopic	Explanation	HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	 Matter & energy Organic & inorganic materials (non-LP items)

Item Name (with tests the item is on)	Scale	Student Practice	NGSS	Specific descriptors
POTATO (Full Test Form A, B, C, Decomposers)	Macroscopic	Explanation	HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon based molecules.	 Matter Decay Cellular respiration (and digestion)
	·		Large Scale Items	
BIOMASSPYRAMID (Full Test Form A, Ecosystems) DEERWOLF2 (Ecosystems)	Ecosystem	Explanation	 HS-LS2-1. Use mathematical and or computational representations to support explanations of factors that affect carrying capacity of ecosystems and different scales. MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystems affect persultings 	 Explaining biomass pyramid Explaining biomass pyramid
CO2 SUMMER (Ecosystems)	Ecosystem	Explanation	HS-LS2-5: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	Predicting/explaining effects on pools of changing fluxes (seasonal patterns & responses to disturbances)

Item Name (with	Scale	Student	NGSS	Specific descriptors
tests the item is on)		Practice		
CO2 WINTER	Ecosystem	Explanation	HS-LS2-4. Use mathematical	Predicting/explaining effects on
(Ecosystems)			representations to support claims	pools of changing huxes (seasonal
			for the cycling of matter and flow	disturbances)
			of energy among organisms in an	
			ecosystem.	
FOODCHAIN4	Ecosystem	Explanation	MS-LS2-3. Develop a model to	Carbon pools & fluxes (carbon
(Full Test Form A and			describe the cycling of matter and	cycling and energy flow)
C, Ecosystems)			flow of energy among living and	
	-		nonliving parts of an ecosystem.	
POSSIBLEFOREST	Ecosystem	Explanation	MS-LS2-3. Develop a model to	Carbon pools & fluxes (carbon
(Ecosystems)			flow of energy among living and	cycling and energy now)
			nonliving parts of an ecosystem.	
FLBULBS2	Global Scale	Explanation	ESS3-3. Apply scientific principles	Explaining effects of human
(Full Test Form A,			to design a method for monitoring	energy use on CO ₂ pools & fluxes
Ecosystems)			the environment	
HAI FFFINITIAI	Global Scale	Data	HS-ESS3-5. Analyze geoscience	Identifying data trends
(Full Test Form C.		Interpretation	data and the results from global	 Carbon pools & fluxes
HES)			climate models to make an	•
			evidence-based forecast of the	
			climate change and associated	
			future impacts to Earth systems	
HALFFFMODEL	Global Scale	Data	HS-ESS2-6. Develop a quantitative	Identifying data trends
(Full Test Form C,		Interpretation	model to describe the cycling of	Carbon pools & fluxes
HES)			carbon among the hydrosphere,	
			biosphere.	

Item Name (with	Scale	Student Brootico	NGSS	Specific descriptors
tests the item is on)		Practice		
KLGLOCAL2 (Full Test Form B and C, HES)	Global Scale	Data Interpretation	MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capital consumption of natural resources	Generalizability of data
			impact Earth's systems.	
KLGFIVE (Full Test Form B, HES)	Global Scale	Data Interpretation	HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.	 Identifying data trends Carbon pools & fluxes
KLGONE (Full Test Form B)	Global Scale	Data Interpretation	HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.	 Identifying data trends Carbon pools & fluxes
		Macr	oscopic Scale Inquiry Items	•
ANIMALCLAIM2 (Full Test Form C, Animals)	Inquiry	Data Interpretation	HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	Arguments from evidenceLogic of warrants
DECOMPCLAIM2 (Full Test Form B, Decomposers)	Inquiry	Data Interpretation	MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.	 Arguments from evidence Logic of warrants

Item Name (with tests the item is on)	Scale	Student Practice	NGSS	Specific descriptors
GLUBEXCLAIM (Full Test Form A, Systems and Scale)	Inquiry	Data Interpretation	HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms	 Arguments from evidence Logic of warrants
PLANTCLAIM2 (Full Test Form A, Plants)	Inquiry	Data Interpretation	MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.	 Arguments from evidence Logic of warrants Identifying uncertainty